Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38534332

RESUMO

Glioblastoma, a deadly brain tumor, shows limited response to standard therapies like temozolomide (TMZ). Recent findings from the REGOMA trial underscore a significant survival improvement offered by Regorafenib (REGO) in recurrent glioblastoma. Our study aimed to propose a 3D ex vivo drug response precision medicine approach to investigate recurrent glioblastoma sensitivity to REGO and elucidate the underlying molecular mechanisms involved in tumor resistance or responsiveness to treatment. Three-dimensional glioblastoma organoids (GB-EXPs) obtained from 18 patients' resected recurrent glioblastoma tumors were treated with TMZ and REGO. Drug responses were evaluated using NAD(P)H FLIM, stratifying tumors as responders (Resp) or non-responders (NRs). Whole-exome sequencing was performed on 16 tissue samples, and whole-transcriptome analysis on 13 GB-EXPs treated and untreated. We found 35% (n = 9) and 77% (n = 20) of tumors responded to TMZ and REGO, respectively, with no instances of TMZ-Resp being REGO-NRs. Exome analysis revealed a unique mutational profile in REGO-Resp tumors compared to NR tumors. Transcriptome analysis identified distinct expression patterns in Resp and NR tumors, impacting Rho GTPase and NOTCH signaling, known to be involved in drug response. In conclusion, recurrent glioblastoma tumors were more responsive to REGO compared to TMZ treatment. Importantly, our approach enables a comprehensive longitudinal exploration of the molecular changes induced by treatment, unveiling promising biomarkers indicative of drug response.


Assuntos
Glioblastoma , Compostos de Fenilureia , Piridinas , Humanos , Antineoplásicos Alquilantes/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Recidiva Local de Neoplasia/patologia , Temozolomida/farmacologia
2.
Heart Vessels ; 37(12): 2137-2149, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35857064

RESUMO

Endothelial and smooth muscle cell dysfunction is an early event at the onset of atherosclerosis, a heterogeneous and multifactorial pathology of the vascular wall. Bone morphogenetic protein (BMP)-4, a mechanosensitive autocrine cytokine, and BMPR-1a, BMPR-1b, BMPR-2 specific receptors play a key role in atherosclerotic plaque formation and vascular calcification and BMP4 is regarded as a biomarker of endothelial cell activation. The study aimed to examine the BMP4 system expression by Real-Time PCR in Human Coronary Artery Endothelial (HCAECs) and Smooth Muscle Cells (HCASMCs) under different flow rates determining low or physiological shear stress in the presence/absence of medicated Bioresorbable Vascular Scaffold (BVS). The HCAEC and HCASMC were subjected to 1-10-20 dyne/cm2 shear stress in a laminar flow bioreactor system, with/without BVS+ Everolimus (600 nM). In HCAECs without BVS the BMP4 expression was similar at 1, 20 dyne/cm2 decreasing at 10 dyne/cm2, while adding BVS+ Everolimus, it decreased both at 1, 10 compared to 20 dyne/cm2. In HCASMCs without BVS + Everolimus, the BMP4 system mRNA expression was significantly reduced at 1, 10 dyne/cm2 compared to 20 dyne/cm2, while in the presence of BVS+ Everolimus, higher BMP4 mRNA levels were observed at 10 compared to 1, 20 dyne/cm2. In HCAECs and HCASMCs BMPRs were expressed in all experimental conditions except for BMPR-1a at 1 dyne/cm2 in HCAEC. Significant correlations were found between BMP4 and BMPRs. The more negligible on BMP4 expression due to low shear stress in HCAEC compared to HCASMC and its reduction in the presence of BVS+ Everolimus at low shear stress highlighted the protection of BMP4-mediated against endothelial dysfunction and neoatherogenesis.


Assuntos
Aterosclerose , Vasos Coronários , Humanos , Vasos Coronários/metabolismo , Everolimo/farmacologia , Implantes Absorvíveis , Miócitos de Músculo Liso/metabolismo , Aterosclerose/genética , RNA Mensageiro/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo
3.
Biomedicines ; 10(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35327332

RESUMO

Background and Methods: Long non-coding RNAs (LncRNAs) and microRNAs are involved in the pathogenesis of obesity, a multifactorial disease that is characterized by inflammation, cardiometabolic complications, and increased cancer risk among other co-morbidities. The up/down regulation of LncRNAs and microRNAs may play an important role in this condition to identify new diagnostic/prognostic markers. The aim of the study was to identify circulating inflammatory LncRNAs in obese adolescents (n = 54) and to evaluate whether their expression behaved differently compared to normal-weight adolescents (n = 26). To have a more complete insight, the expression of some circulating miRNAs that are linked to obesity (miR-33a, miR-223, miR-142, miR-199a, miR-181a, and miR-4454) were also analyzed. Results: LncRNAs and miRNAs were extracted simultaneously from plasma samples and amplified by Real-Time PCR. Among the 86 LncRNAs that were analyzed with custom pre-designed plates, only four (RP11-347E10.1, RP11-10K16.1, LINC00657, and SNHG12) were amplified in both normal-weight and obese adolescents and only SNHG12 showed significantly lower expression compared to the normal-weight adolescents (p = 0.026). Circulating miRNAs showed a tendency to increase in obese subjects, except for miR-181a expression. LncRNAs and miRNAs correlated with some clinical and metabolic parameters. Conclusions: Our results suggest the importance of these new biomarkers to better understand the molecular mechanisms of childhood obesity and its metabolic disorder.

4.
Curr Pharm Des ; 28(19): 1592-1605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35152861

RESUMO

BACKGROUND: A portion of the human genome is characterized by long non-coding RNAs (lncRNAs), a class of non-coding RNA longer than 200 nucleotides. Recently, the development of new biomolecular methods made it possible to delineate the involvement of lncRNAs in the regulation of different biological processes, both physiological and pathological, by acting within the cell with different regulatory mechanisms based on their specific target. To date, obesity is one of the most important health problems spreading all over the world, including the children: the search for new potential early biomarkers could open the doors to novel therapeutic strategies useful to fight the disease early in life and to reduce the risk of obesity-related co-morbidities. OBJECTIVE: This review highlights the lncRNAs involved in obesity, in adipogenesis, and lipid metabolism, particularly in lipogenesis. CONCLUSION: LncRNAs involved in adipogenesis and lipogenesis, being at the cross-road of obesity, should be deeply analysed in this contest, allowing to understand possible causative actions in starting obesity and whether they might be helpful to treat obesity.


Assuntos
RNA Longo não Codificante , Adipogenia/genética , Biomarcadores/metabolismo , Humanos , Metabolismo dos Lipídeos , Obesidade/genética , Obesidade/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...